244-MPT overcomes gefitinib resistance in non-small cell lung cancer cells
نویسندگان
چکیده
The epidermal growth factor receptor (EGFR) is known to play a critical role in non-small cell lung cancer(NSCLC). Several EGFR tyrosine kinase inhibitors(TKIs), such as gefitinib, have been used as effective clinical therapies for patients with NSCLC. Unfortunately, acquired resistance to gefitinib commonly occurs after 6-12 months of treatment. The resistance is associated with the appearance of the L858R/T790M double mutation of the EGFR. In our present study, we discovered a compound,referred to as 244-MPT, which could suppress either gefitinib-sensitive or -resistant lung cancer cell growth and colony formation, and also suppressed the kinase activity of both wildtype and double mutant (L858R/T790M) EGFR. The underlying mechanism reveals that 244-MPT could interact with either the wildtype or double-mutant EGFR in an ATP-competitive manner and inhibit activity. Treatment with 244-MPT could substantially reduce the phosphorylation of EGFR and its downstream signaling pathways, including Akt and ERK1/2 in gefitinib-sensitive and -resistant cell lines. It was equally effective in suppressing EGFR phosphorylation and downstream signaling in NL20 cells transfected with wildtype, single-mutant (L858R) or mutant (L858R/T790M) EGFR. 244-MPT could also induce apoptosis in a gefitinib-resistant cell line and strongly suppress gefitinib-resistant NSCLC tumor growth in a xenograft mouse model. In addition, 244-MPT could effectively reduce the size of tumors in a gefitinib-resistant NSCLC patient-derived xenograft (PDX) SCID mouse model. Overall, 244-MPT could overcome gefitinib-resistance by directly targeting the EGFR.
منابع مشابه
Combined lapatinib and cetuximab enhance cytotoxicity against gefitinib-resistant lung cancer cells.
Although non-small cell lung cancer (NSCLC) cells with somatic mutations in their epidermal growth factor receptors (EGFR) initially show a dramatic response to tyrosine kinase inhibitor (TKI), these cells eventually develop resistance to TKI. This resistance may be caused by a secondary T790M mutation in the EGFR tyrosine kinase, which leads to the substitution of methionine for threonine in 7...
متن کاملMarsdenia tenacissima extract overcomes Axl- and Met-mediated erlotinib and gefitinib cross-resistance in non-small cell lung cancer cells
Tyrosine kinase inhibitors (TKIs) are an effective treatment strategy for non-small cell lung cancer (NSCLC) patients harboring mutations that result in constitutive activation of the epidermal growth factor receptor (EGFR). However, most patients eventually develop resistance to TKIs. This occurs due to additional EGFR mutations or the activation of bypass signaling pathways. In our previous w...
متن کاملAmphiregulin promotes BAX inhibition and resistance to gefitinib in non-small-cell lung cancers.
Molecular resistance mechanisms affecting the efficiency of receptor tyrosine kinase inhibitors such as gefitinib in non-small-cell lung cancer (NSCLC) cells are not fully understood. Amphiregulin (Areg) overexpression has been proposed to predict NSCLC resistance to gefitinib and we have established that Areg-overexpressing H358 NSCLC cells resist apoptosis. Here, we demonstrate that Areg prev...
متن کاملLosmapimod Overcomes Gefitinib Resistance in Non-small Cell Lung Cancer by Preventing Tetraploidization
The epidermal growth factor receptor (EGFR) is known to play a critical role in non-small cell lung cancer (NSCLC). Constitutively active EGFR mutations, including in-frame deletion in exon 19 and L858R point mutation in exon 21, contribute about 90% of all EGFR-activating mutations in NSCLC. Although oral EGFR-tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib, show dramatic clinical e...
متن کاملLovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo
Gefitinib resistance has been shown to complicate cancer therapy. Lovastatin is a proteasome inhibitor that enhances gefitinib-induced antiproliferation in non-small cell lung cancer. The objective of this study is to investigate the mechanism of lovastatin-induced antiproliferation in gefitinib-resistant human cholangiocarcinoma.Two gefitinib-resistant cholangiocarcinoma cell lines, SSP-25 and...
متن کامل